jump to navigation

What is Non-Ionizing Radiation? April 6, 2007

Posted by healthyself in 0 Hz-3kHz, 000 Hz, 1 GHz- 300 GHz, 1 mm, 100 nm - 400 nm, 3 kHz-300 GHz, 300 GHz, 400 nm - 700 nm, 700 nm, Amplified Signals, Amplitude, Analog, Antennas, Atmospheric Pressure, Blogroll, Bytes, Cable, Cell Masts, Cell Phones, Coherence, Computer Rooms, Cordless Phones, DECT, Distribution, Earth, EEG, EHF, Electrical Components, Electrical Pulses, Electrical Surges, Electrical Wiring, electromagnetic, Electromagnetic Communications, Electromagnetic Field, Electromagnetic Interference, Electromagnetic pollution, Electromagnetic Radiation, Electromagnetic Spectrum, Electromagnetic waves, Electrosensitivity, Electrosmog, ELF, EMF Research, EMF's, EMR, Entropy, Environment, Exposure, Fiber Optic, Frequencies, Hand Portables, Handheld Units, HF, High Frequencies, high voltage transmission lines, Internet, ionizing radiation, Landline, Laptops, LF, Lifestyle, Light, light beam, Long Term Health Risks, Low Frequencies, Magnetic, MCS, MF, MHz, Microwave exposure, Mobile Music, mobile telephones, Non-Thermal Levels, Penetration, Photons, Photosensitive, Pulsed Radiation, Pulses, Pure Tone, QV, Radar, Radians, radiation, Radio Frequency Radiation, Radio Waves, radioprotector, Radios, Research Needed, Resonance, Resonant Frequency, ringing, ringtones, Risk of Disease, Safe Levels, Safety, SAR, Schuman Resonance, SHF, Speakerphones, Spectrum, Telecommunications, Telephony, Transducer, Transfer, transmission, UHF, Ultraviolet, VDT, Visible Light, VLF, W/Kg, W/m2, watts, Wave Front, Waves, Who is Affected?, WiFi, Wired, Wired Phone, Wireless, Wireless Phones, X-Rays.
add a comment

Definitions

The properties and effects of non-ionising radiations are very diverse. For the purpose of this Policy non-ionising radiations include:

Extremely low frequency (ELF) radiation

Electromagnetic radiation with frequencies in the range 0 Hz (static fields) to 3 kHz, including the 50 Hz electric and magnetic fields associated with the domestic mains electricity supply such as in domestic electrical appliances, electricity supply substations and overhead power lines.

Radiofrequency (RF) radiation

Electromagnetic radiation with frequencies in the range 3 kHz to 300 GHz, which is produced by artificial sources such as visual display units and mobile phones.

Microwave (MW) radiation

Electromagnetic radiation with frequencies in the range 1 GHz to 300 GHz, which is produced by artificial sources such as in microwave ovens and by microwave communication devices. (This radiation is now considered part of Radiofrequency radiation.)

Infrared (IR) radiation

Electromagnetic radiation with wavelengths between 700 nm and 1 mm, which is present in sunlight and produced by artificial sources such as electric radiator heaters.

Visible light

Electromagnetic radiation with wavelengths between 400 nm (blue) and 700 nm (red), which is present in sunlight and produced by numerous artificial sources, including lasers.

Ultraviolet (UV) radiation

Electromagnetic radiation with wavelengths between 100 nm and 400 nm, which is present in sunlight as well as produced by artificial sources such as arc welding and sterilization lamps.

http://www.unisa.edu.au/policies/policies/hr/HR30.asp

How is the Electromagnetic Radiation Measured? October 16, 2006

Posted by healthyself in Blogroll, Definitions, Electrical Components, Electrical Pulses, Electrical Surges, Electrical Wiring, Electromagetic pollution, electromagnetic, Electromagnetic Communications, Electromagnetic Field, Electromagnetic Interference, Electromagnetic pollution, Electromagnetic Spectrum, Electromagnetic waves, Electrosensitivity, Electrosmog, ELF, EMF's, EMR, Environment, Exposure, Frequencies, GHz, Global Warming, Government's role, HF, High Frequencies, high voltage transmission lines, HOuseholds, Hz, Infrared, LF, Lifestyle, light beam, Low Frequencies, MF, MHz, Microwave exposure, Pulsed Radiation, Pulses, Quantum Waves, radiation, Radio Waves, Radios, Sound, Spectrum, transmission, Ultraviolet, Unified Field, Visible Light, VLF, Waves.
1 comment so far

…The electromagnetic (EM) spectrum is …types of radiation … as a group. Radiation is energy that travels and spreads out as it goes– visible light …. from a lamp….or radio waves .. or from a radio station are two types of electromagnetic radiation. Other examples of EM radiation are microwaves, infrared and ultraviolet light, X-rays and gamma-rays. Hotter, more energetic objects and events create higher energy radiation than cool objects. Only extremely hot objects or particles moving at very high velocities can create high-energy radiation like X-rays and gamma-rays. Here are the different types of radiation in the EM spectrum, in order from lowest energy to highest:

Radio Radio: …this is the same kind of energy that radio stations emit into the air …to capture and turn into your favorite Mozart, Madonna, or Coolio tunes. But radio waves are also emitted by other things … such as stars and gases in space…
Microwave Microwaves: … will cook your popcorn in just a few minutes! In space, microwaves are used by astronomers to learn about the structure of nearby galaxies, including our own Milky Way!
Infrared to UV Infrared: we often think of this as being the same thing as ‘heat’, because it makes our skin feel warm. In space, IR light maps the dust between stars. Visible:…this is the part that our eyes see. Visible radiation is emitted by everything from fireflies to light bulbs to stars … also by fast-moving particles hitting other particles.

Ultraviolet: we know that the Sun is a source of ultraviolet (or UV) radiation, because it is the UV rays that cause our skin to burn! Stars and other “hot” objects in space emit UV radiation.

X-ray X-rays: your doctor uses them to look at your bones and your dentist to look at your teeth. Hot gases in the Universe also emit X-rays .
Gamma-ray Gamma-rays: radioactive materials (some natural and others made by man in things like nuclear power plants) can emit gamma-rays. Big particle accelerators that scientists use to help them understand what matter is made of can sometimes generate gamma-rays. But the biggest gamma-ray generator of all is the Universe! It makes gamma radiation in all kinds of ways.

A Radio Wave is not a Gamma-Ray, a Microwave is not an X-ray … or is it?

Across the EM spectrum
Radio waves, visible light, X-rays, and all the other parts of the electromagnetic spectrum are fundamentally the same thing, electromagnetic radiation.

We may think that radio waves are completely different physical objects or events than gamma-rays. They are produced in very different ways, and we detect them in different ways. But are they really different things? The answer is ‘no’. Radio waves, visible light, X-rays, and all the other parts of the electromagnetic spectrum are fundamentally the same thing. They are all electromagnetic radiation.

Electromagnetic radiation can be described in terms of a stream of photons, which are massless particles each traveling in a wave-like pattern and moving at the speed of light. Each photon contains a certain amount (or bundle) of energy, and all electromagnetic radiation consists of these photons. The only difference between the various types of electromagnetic radiation is the amount of energy found in the photons. Radio waves have photons with low energies, microwaves have a little more energy than radio waves, infrared has still more, then visible, ultraviolet, X-rays, and … the most energetic of all … gamma-rays.

Across the EM spectrum
The electromagnetic spectrum can be expressed in terms of energy, wavelength, or frequency.

“Actually, the electromagnetic spectrum can be expressed in terms of energy, wavelength, or frequency. Each way of thinking about the EM spectrum is related to the others in a precise mathematical way. So why do we have three ways of describing things, each with a different set of physical units? After all, frequency is measured in cycles per second (which is called a Hertz), wavelength is measured in meters, and energy is measured in electron volts.”

“The answer is that scientists don’t like to use big numbers when they don’t have to. It is much easier to say or write “two kilometers or 2 km” than “two thousand meters or 2,000 m”. So generally, scientists use whatever units are easiest for whatever they are working with. In radio astronomy, astronomers tend to use wavelengths or frequencies. This is because most of the radio part of the EM spectrum falls in the range from a about 1 cm to 1 km (30 gigahertz (GHz) to 100 kilohertz (kHz)). The radio is a very broad part of the EM spectrum. Infrared astronomers also use wavelength to describe their part of the EM spectrum. They tend to use microns (or millionths of meters) for wavelengths, so that they can say their part of the EM spectrum falls in the range 1 to 100 microns. Optical astronomers use wavelengths as well. In the older “CGS” version of the metric system, the units used were angstroms. An angstrom is equal to 0.0000000001 meters (10-10 m in scientific notation)! In the newer “SI” version of the metric system, we think of visible light in units of nanometers or 0.000000001 meters (10-9 m). In this system, the violet, blue, green, yellow, orange, and red light we know so well has wavelengths between 400 and 700 nanometers. This range is only a small part of the entire EM spectrum, so you can tell that the light we see is just a little fraction of all the EM radiation around us! By the time you get to the ultraviolet, X-ray, and gamma-ray regions of the EM spectrum, lengths have become too tiny to think about any more. So scientists usually refer to these photons by their energies, which are measured in electron volts. Ultraviolet radiation falls in the range from a few electron volts (eV) to a about 100 eV. X-ray photons have energies in the range 100 eV to 100,000 eV (or 100 keV). Gamma-rays then are all the photons with energies greater than 100 keV.

Why Do We Have to Go to Space to See All of the Electromagnetic Spectrum?

diagram of EM radiation that reaches the Earth's surface

Electromagnetic radiation from space is unable to reach the surface of the Earth except at a very few wavelengths, such as the visible spectrum, radio frequencies, and some ultraviolet wavelengths. Astronomers can get above enough of the Earth’s atmosphere to observe at some infrared wavelengths from mountain tops or by flying their telescopes in an aircraft. Experiments can also be taken up to altitudes as high as 35 km by balloons which can operate for months. Rocket flights can take instruments all the way above the Earth’s atmosphere for just a few minutes before they fall back to Earth, but a great many important first results in astronomy and astrophysics came from just those few minutes of observations. For long-term observations, however, it is best to have your detector on an orbiting satellite … and get above it all!

http://imagine.gsfc.nasa.gov/docs/science/know_l1/emspectrum.html

The Complexity of Sound Demonstrated by Dolphins and Whales October 3, 2006

Posted by healthyself in Amplitude, Animal Research, Beneficial frequencies, Biological Activity, Biological Effects, Blogroll, Buzzing, Cell phone safety, Clicks, Communication, Consciousness, Conversations, Ear, Extra-Sensory Perception, Health related, Hearing, Interdisciplinary, Intuition, Learning, Light, Pure Tone, Research Needed, Resonance, Sound, Stress, Tone, transmission, Vibration, Visible Light, Who is Affected?, Women's Health.
1 comment so far

“…Dolphins and whales…communicate through a tonal language which they use to contact us…. that the males can dive down more than 6000 feet and…the sounds they make are not pretty. They make clicks and static at depths where the sounds can be more easily transmitted. The dolphins and the whales also use echo-location, which is a way of producing sound…Is that similar to their sonar?…Yes. They send out sound waves and it moves toward the object they are focused on. When the echo from the object bounces back, it gives the dolphin or whale an acoustic picture of the environment – or the other whale or the other person that’s in the water with them. It’s interesting that in order to interpret the sounds, the sounds have to be loud enough for the echo to bounce back to the dolphin or whale and short enough so that the echo of one sound bounces back before the next sound is sent out. The sounds are sent out in all directions from a cavity located in front of their brain, called the melon.”

“As they make these sounds, they are definitely directing these toward our bodies if we are in the water swimming with them. When dolphins get really close to me, the interval between their clicks is so short, that it’s very much like a buzzing sound. Sound conveys a lot more information than light. Light is the way a human can see things, through our human eyes. But sound provides a lot more information. For example, studies have shown that when scanning a fish dolphins can distinguish whether the fish is toxic or non-toxic….”

“….Interesting studies have shown that when the left hemisphere of the human brain is sedated that person cannot speak – they can sing but they cannot speak. On the other hand, if the right hemisphere of the brain is sedated then the person can speak but cannot sing. Dolphins, with their sounds, seem to be stimulating the right hemisphere of the human brain, activating the dormant potential and higher senses –like the sixth sense.”

http://paulapeterson.com/Joan_Ocean.html

What are the Wavelengths of the Electromagnetic Spectrum? September 27, 2006

Posted by healthyself in Blogroll, Cell phone safety, Definitions, Distribution, Electromagnetic Communications, Electromagnetic Field, Electromagnetic Interference, Electromagnetic pollution, Electromagnetic Spectrum, Electromagnetic waves, Electrosensitivity, Electrosmog, ELF, EMR, Endogenous Fields, Environment, Frequencies, Gamma Rays, Infrared, Light, Microwave exposure, mobile telephones, Noise, particle, Radio Waves, Radios, Sound, Spectrum, Telecommunications, Telephony, transmission, UHF, Ultraviolet, VDT, Visible Light, X-Rays.
1 comment so far

“The electromagnetic spectrum is the distribution of electromagnetic radiation according to energy (or equivalently, by virtue of the relations in the previous section, according to frequency or wavelength).”

Regions of the Electromagnetic Spectrum

“The following table gives approximate wavelengths, frequencies, and energies for selected regions of the electromagnetic spectrum.”

Spectrum of Electromagnetic Radiation


The notation “eV” stands for electron-volts, a common unit of energy measure in atomic physics. A graphical representation of the electromagnetic spectrum is shown in the figure below.

The electromagnetic spectrum


“Thus we see that visible light and gamma rays and microwaves are really the same things. They are all electromagnetic radiation; they just differ in their wavelengths.”

The Spectrum of Visible Light

The visible part of the spectrum may be further subdivided according to color, with red at the long wavelength end and violet at the short wavelength end, as illustrated (schematically) in the following figure.

The visible spectrum


http://csep10.phys.utk.edu/astr162/lect/light/spectrum.html

The Visible Spectrum September 22, 2006

Posted by healthyself in Cell phone safety, Electromagnetic Spectrum, Electromagnetic waves, Light, Visible Light.
add a comment
The Elements of Light
The area of the graph under the horseshoe-shaped curve indicates the visible spectrum, the range of light frequencies that the human eye can sense unaided. The most vivid colors appear on the edges and the three primary colors„red, green and blue„almost form a triangle at the apex. It is the various combinations of these three light frequencies that make us perceive all the other colors.

http://web.canon.jp/Imaging/uwphoto/page/04-e.html

What is the Electromagnetic Spectrum? September 21, 2006

Posted by healthyself in Blogroll, Cell phone safety, Color, Definitions, Electromagnetic Field, Electromagnetic waves, Frequencies, Gamma Rays, Infrared, Light, light beam, Low Frequencies, Magnetic, MHz, Microwave exposure, Oscillate, Photons, Radio Waves, Spectrum, Visible Light.
add a comment

“..Electromagnetic radiation can be described in terms of a stream of photons, each traveling in a wave-like pattern, moving at the speed of light and carrying some amount of energy. … the only difference between radio waves, visible light, and gamma-rays is the energy of the photons. Radio waves have photons with low energies, microwaves have a little more energy than radio waves, infrared has still more, then visible, ultraviolet, X-rays, and gamma-rays.””Actually, the amount of energy a photon has makes it sometimes behave more like a wave and sometimes more like a particle. This is called the “ wave-particle duality” of light. …only in how it behaves. Low energy photons (such as radio) behave more like waves, while higher energy photons (such as X-rays) behave more like particles. …the electromagnetic spectrum can be expressed in terms of energy, wavelength, or frequency. Each way of thinking about the EM spectrum is related to the others in a precise mathematical way. The relationships are:
the wavelength equals the speed of light divided by the frequency
or
lambda = c / nu” http://imagine.gsfc.nasa.gov/docs/science/know_l2/emspectrum.html

Light, Color and Electromagnetic Frequency September 21, 2006

Posted by healthyself in 430 Trillion Hz-750 Trillion Hz, Auric Field, Beneficial frequencies, BioPhotons, Blogroll, Cell phone safety, Color, Electromagnetic Field, Electromagnetic Spectrum, Electromagnetic waves, Energy, Gamma Rays, Light, Low Frequencies, Oscillate, Penetration, Quantum Physics, Radio Waves, Red, Resonance, Spectrum, Subtle Energies, Transformation, vacuum, Vibration, Vibrational Medicine, Violet, Visible Light, Waves.
3 comments

…”The scientific notion of photons begins with the fact that these elementary particles of energy display two seemingly contradictory behaviors: One behavior has to do with how they act as members of a group (in a wavefront) and the other relates to how they behave in isolation (as discrete particles).”

“An individual photon may be thought of as a packet of waves cork-screwing rapidly through space. Each packet is an oscillation along two perpendicular axes of force – the electrical and the magnetic. Because light is an oscillation, wave-particles interact with each other.

“One way of understanding the dual-nature of light is to realize that wave after wave of photons affect our telescopes – but individual photons are absorbed by the neurons in our eyes.”…….. “Stars (such as our Sun) exist because space-time does more than simply transmit light as waves. Somehow – still unexplained-1 – space-time causes matter too. And one thing distinguishing light from matter is that matter has “mass” while light has none….”

….”In relationship to light, matter can be opaque or transparent – it can absorb or refract light. Light can pass into matter, through matter, reflect off matter, or be absorbed by matter. When light passes into matter, light slows – while its frequency increases. When light reflects, the path it takes changes. When light is absorbed, electrons are stimulated potentially leading to new molecular combinations. But even more significantly, when light passes through matter – even without absorption – atoms and molecules vibrate the space-time continuum and because of this, light can be stepped down in frequency….”

…”In addition to describing the gravitational effects of matter on space-time, Einstein performed an extremely elegant investigation into the influence of light associated with the photo-electric effect. Before Einstein, physicists believed light’s capacity to affect matter was based primarily on “intensity”. But the photo-electric effect showed that light effected electrons on the basis of frequency as well…….In addition to describing the gravitational effects of matter on space-time, Einstein performed an extremely elegant investigation into the influence of light associated with the photo-electric effect.. showed that light effected electrons on the basis of frequency as well. Thus red light – regardless of intensity – fails to dislodge electrons in metals, while even very low levels of violet light stimulate measurable electrical currents. Clearly the rate at which light vibrates has a power all its own.”

http://www.universetoday.com/am/publish/where_does_visible_light.html?2512005

“Light waves also come in many frequencies. The frequency is the number of waves that pass a point in space during any time interval, usually one second. It is measured in units of cycles (waves) per second, or Hertz (Hz). The frequency of visible light is referred to as color, and ranges from 430 trillion Hz, seen as red, to 750 trillion Hz, seen as violet. Again, the full range of frequencies extends beyond the visible spectrum, from less than one billion Hz, as in radio waves, to greater than 3 billion billion Hz, as in gamma rays.”

“As noted above, light waves are waves of energy. The amount of energy in a light wave is proportionally related to its frequency: High frequency light has high energy; low frequency light has low energy. Thus gamma rays have the most energy, and radio waves have the least. Of visible light, violet has the most energy and red the least.”

“Light not only vibrates at different frequencies, it also travels at different speeds. Light waves move through a vacuum at their maximum speed, 300,000 kilometers per second or 186,000 miles per second, which makes light the fastest phenomenon in the universe. Light waves slow down when they travel inside substances, such as air, water, glass or a diamond. The way different substances affect the speed at which light travels is key to understanding the bending of light, or refraction…”

“So light waves come in a continuous variety of sizes, frequencies and energies. We refer to this continuum as the electromagnetic spectrum …visible light occupies only one-thousandth of a percent of the spectrum.”

http://science.howstuffworks.com/light3.htm

Follow

Get every new post delivered to your Inbox.

Join 66 other followers